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Abstract: One-p01 conversion qf arides I into betu~indnles 5 based on he sequendal treatment of azides I with 

triphenylphosphine, diphenyl ketene andfarther headng in the presence of activated manganesedioxi&isreported. 

Althoughthebenzv]indoleringsystemconstitutestheABCringsofthepotentantibioticskinamycins,andsome 

derivatives occur naturally’, there are only a few reports dealing with the synthesis of such ring system. Most of the 

reported synthetic methods for linear benzv]indole derivatives involve the pyrrole ring construction on a 

naphthalene derivative2, and only two methods based on the central phenyl ring formation between a phenyl a 

pyrrole residue have been reported’. Recently, this ring system has been prepared by regioselective Diels-Alder 

reaction between an lndole-4,7-dione derivative and 1-methoxy- 1,3_cyclohexsdiene’. However, synthesis of linear 

benzv]indole derivatives involving the simultaneous formation of the pyrrole and the central phenyl ring has, to our 

knowledge, not been attempted. 

The vinylketenimine variant of the intramolecular Diels-Alder (IMDA) cycloaddition in which the vinylketen- 

imine serves as the diene component of the reaction has been applied to a convergent mute of pyriale 

alkaloids5. In this context, we have reported6 that ketenimines derived from the aza-Wittig reaction between o- 

butadienyl phenyliminophosphorane and ketenes undergo IMDA cycloaddition, whereby the arylketenimine 

moiety has functioned as the diene component using one cumulative carbon-carbon double bond and one carbon- 

carbon double bond of the aromatic ring. 

In this communication, we wish to establish the efficacy of intramolecular cycloadditionof arylketenimines 

and stymne-like dienophiles that are linked with a flexible alkyl chain containing two carbon atoms. The process 

has been found to be useful in the simultaneous formation of pyrrole and phenyl rings in the synthesis of 

benzv]indoles. 

The starting azides’ 1 were synthesized in 64-9095 overall yields by the sequence: (a) reaction of triphenyl- 

phosphine with excess of 13dibromopropane, (b) subsequent reaction with excess of sodium azide, (c)conversion 
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d Ar= 4-QN-CsH, (45%) 
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f At= 4-Pyridyl(38%) 

g Ar= 3-Thienyl(59%) 

Scheme 

of the resulting phosphonium salt to the corresponding ylid by the action of potassium bis(trimethylsilyl)amide and 

(d) Wittig coupling with the appropriate aldehyde’. Staudinger reaction of azides 1 with triphenylphosphine in 

diethyl ether at room temperature for 2 h leads to the corresponding iminophosphoranes 2 (6 C-l= 34.9 ppm, zJr.c= 

17.12 Hz; 6 C-2= 45.8 ppm, ‘J,= 5.04 Hz; 6 3*P= 11.6 ppm) which were used without purification for the next step. 

Aza Wittig-type reaction of iminophosphoranes 2 with diphenylketene in toluene at room temperature for a short 

period of time leads to the corresponding ketenimine 3 which by treatment with activated manganese dioxide in 

toluene at reflux temperature for 2 h yielded the benzv]indoles 5 in moderate yields9 (27-595). However, 

considering the number of steps involved in this one-pot reaction the yields could be considered as good. Efforts 

to improve the yield of the tricyclic compound 5 under a variety of conditions were unsuccessful, e. g. heating in 

toluenethe intermediate ketenimine 3 led to a complex mixture in which the tricyclic compound5 could be detected 
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as a minor component while in boiling nitrobenzene the benzflindoles S wen obtained albeit in low yields (25 

30%). 

In spite of the moderate yields, this experimentally convenient sequence provides direct access tobenzv]indoles 

in one-pot process. In general,this conversion proceeded without complications in a range of substrams and the 

Scheme presents some of the benzv]indoles rendered readily available via this methodology. 

The conversion 2 + 5 includes ainitial formation of a ketenimine 3 (as evidenced by I.R. v= 2016 cm-l) as highly 

reactive intermediate which undergoes a [4+2] cycloadditon whereby the arylketenimine portion has functioned as 

a diene and the carbon-carbon double bond of the styryl portion has taken the role of the dienophiie. A final oxidative 

aromatization of the cycloadduct 4 followed by a [ 1,3]-proton shift furnishes the benzv]indole 5. 

In conclusion the present study demonstrate that the consecutive Staudinger reaction/aza Wittig reaction/ 

intramolecular Diels-Alder cycloaddition strategy afford a new entry to benzov]indoles”‘. Because of its simplicity, 

easy accessibility of starting materials and stmightforward product isolation the investigated reaction pmvides a 

method for the preparation of benzv]indoles which is competitive with known approaches to this ring system. 
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