One-pot Conversion of 4-Aryl-3-Butenylazides into Benz[f]indoles by a Consecutive Staudinger Reaction / Aza Wittig Reaction / Intramolecular Diels-Alder Cycloaddition Process.

Pedro Molina, Carmen López-Leonardo.

Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, E-30071, Murcia, Spain.

Abstract: One-pol conversion of azides 1 into benz[f]indoles 5 based on the sequential treatment of azides 1 with triphenylphosphine, diphenyl ketene and further heating in the presence of activated manganese dioxide is reported.

Although the benz[f]indole ring system constitutes the ABC rings of the potent antibiotics kinamycins, and some derivatives occur naturally¹, there are only a few reports dealing with the synthesis of such ring system. Most of the reported synthetic methods for linear benz[f]indole derivatives involve the pyrrole ring construction on a naphthalene derivative², and only two methods based on the central phenyl ring formation between a phenyl a pyrrole residue have been reported³. Recently, this ring system has been prepared by regioselective Diels-Alder reaction between an indole-4,7-dione derivative and 1-methoxy-1,3-cyclohexadiene⁴. However, synthesis of linear benz[f]indole derivatives involving the simultaneous formation of the pyrrole and the central phenyl ring has, to our knowledge, not been attempted.

The vinylketenimine variant of the intramolecular Diels-Alder (IMDA) cycloaddition in which the vinylketenimine serves as the diene component of the reaction has been applied to a convergent route of pyridocarbazole alkaloids⁵. In this context, we have reported⁶ that ketenimines derived from the aza-Wittig reaction between obutadienyl phenyliminophosphorane and ketenes undergo IMDA cycloaddition, whereby the arylketenimine moiety has functioned as the diene component using one cumulative carbon-carbon double bond and one carboncarbon double bond of the aromatic ring.

In this communication, we wish to establish the efficacy of intramolecular cycloaddition of arylketenimines and styrene-like dienophiles that are linked with a flexible alkyl chain containing two carbon atoms. The process has been found to be useful in the simultaneous formation of pyrrole and phenyl rings in the synthesis of benz[f]indoles.

The starting azides⁷ 1 were synthesized in 64-90% overall yields by the sequence: (a) reaction of triphenylphosphine with excess of 1,3-dibromopropane, (b) subsequent reaction with excess of sodium azide, (c) conversion

Scheme

of the resulting phosphonium salt to the corresponding ylid by the action of potassium bis(trimethylsilyl)amide and (d) Wittig coupling with the appropriate aldehyde⁸. Staudinger reaction of azides 1 with triphenylphosphine in diethyl ether at room temperature for 2 h leads to the corresponding iminophosphoranes 2 (δ C-1= 34.9 ppm, ${}^{2}J_{pc}$ = 17.12 Hz; δ C-2= 45.8 ppm, ${}^{3}J_{pc}$ = 5.04 Hz; $\delta {}^{31}P$ = 11.6 ppm) which were used without purification for the next step. Aza Wittig-type reaction of iminophosphoranes 2 with diphenylketene in toluene at room temperature for a short period of time leads to the corresponding ketenimine 3 which by treatment with activated manganese dioxide in toluene at reflux temperature for 2 h yielded the benz[f]indoles 5 in moderate yields⁹ (27-59%). However, considering the number of steps involved in this one-pot reaction the yields could be considered as good. Efforts to improve the yield of the tricyclic compound 5 under a variety of conditions were unsuccessful, *e. g.* heating in toluene the intermediate ketenimine 3 led to a complex mixture in which the tricyclic compound 5 could be detected as a minor component while in boiling nitrobenzene the benz[f]indoles 5 were obtained albeit in low yields (25-30%).

In spite of the moderate yields, this experimentally convenient sequence provides direct access to benz[f]indoles in one-pot process. In general this conversion proceeded without complications in a range of substrares and the Scheme presents some of the benz[f]indoles rendered readily available via this methodology.

The conversion $2 \rightarrow 5$ includes a initial formation of a ketenimine 3 (as evidenced by I.R. v=2016 cm⁻¹) as highly reactive intermediate which undergoes a [4+2] cycloadditon whereby the arylketenimine portion has functioned as a diene and the carbon-carbon double bond of the styryl portion has taken the role of the dienophile. A final oxidative aromatization of the cycloadduct 4 followed by a [1,3]-proton shift furnishes the benz[f]indole 5.

In conclusion the present study demonstrate that the consecutive Staudinger reaction/aza Wittig reaction/ intramolecular Diels-Alder cycloaddition strategy afford a new entry to benzo[f]indoles¹⁰. Because of its simplicity, easy accessibility of starting materials and straightforward product isolation the investigated reaction provides a method for the preparation of benz[f]indoles which is competitive with known approaches to this ring system.

Acknowledgement: We gratefully acknowledge the financial support of the Dirección General de Investigación Científica y Técnica (project number PB89-0436) and for a postdoctoral fellowship (C. L. L.).

References and Notes

- Omura, S.; Nakagawa, A.; Yamada, H.; Hata, T.; Furusaki, A.; Watanabe, T. Chem. Pharm. Bull. 1973, 21, 931; Bowden, B. F.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1972, 25, 2659.
- Süs, O.; Glos, M.; Möller, K.; Eberhart, H. D. Justus Liebigs Ann. Chem. 1953, 583, 150; Ambeker, S.Y.; Siddappa, S. J. Chem. Soc (C) 1966, 477; Germeraad, P.; Moore, H.W. J. Org. Chem. 1974, 39, 774; Maruyama, K.; Osuka, A.; Nakagawa, K.; Nabeshima, T.; Tabuchi, T. Synthesis 1989, 628; Shakhnovich, A. I. J. Heterocyclic Chem. 1991, 28, 33.
- Murakami, Y.; Watanabe, T. J. Chem. Soc. Perkin Trans. 1 1988, 3005; Jackson, P. M.; Moody, C. J. J. Chem. Soc. Perkin Trans. 1 1990, 2156.
- 4. Weeratunga, G.; Prasad, G. K. B.; Dilley, J.; Taylor, N. J.; Dmitrienko, G. I. Tetrahedron Lett. 1990, 5713.
- 5. Differding, E.; Ghosez, L. Tetrahedron Lett. 1985, 1647.
- 6. Molina, P.; Alajarín, M.; Vidal, A.; Sanchez-Andrada, P. J. Org. Chem. 1992, 57, 929.
- ¹H NMR analysis at 300 MHz revealed the Z stereochemistry of the newly formed carbon-carbon double bond manifested itself in ³J_{HaHb} values ranging from 10.6 to 11.7 Hz.
 Compound 1b: ¹H NMR (300 MHz, CDCl₃) δ 2.61 (dq, 2H, J= 1.83, 7.10 Hz, H-2), 3.35 (t, 2H, J= 7.1 Hz, H-1), 3.80 (s, 3H, CH₃O), 5.53 (dt, 1H, J= 7.1, 11.54 Hz, H-3), 6.49 (d, 1H, J= 11.5 Hz, H-4), 6.87 (d, 2H, J= 8.8 Hz, aromatics), 7.21 (d, 2H, J= 8.8 Hz, aromatics). ¹³C NMR (75 MHz, CDCl₃) δ 28.3 (C-2), 51.2 (C-1), 55.3 (CH₃O), 113.7 (C_m), 126.0 (C-3), 129.6 (C_i), 129.9 (C_o), 131.1 (C-4), 158.6 (C_p). m/z (%) 203 (M*, 12), 115 (100). I.R. v (film) 2101 (-N₃) cm⁻¹.

Compound 1c: ¹H MNR (300 MHz, CDCl₃) δ 2.57 (dq, 2H, J=1.7, 6.7 Hz, H-2), 3.62 (t, 2H, J= 6.7 Hz, H-1), 5.66 (dt, 1H, J= 6.7, 11.54 Hz, H-3), 6.51 (d, 1H, J= 11.54 Hz, H-4), 7.18 (d, 2H, J= 8.43 Hz, aromatics), 7.31 (d, 2H, J= 8.43 Hz). ¹³C NMR (75 MHz, CDCl₃) δ 28.3 (C-2), 51.0 (C-1), 128.4 (C-3), 128.5 (C_m), 130.0 (C_o), 130.6 (C-4), 132.8 (C_p), 135.4 (C₁). m/z (%) 209 (M*+2, 6), 207 (M*, 21), 115 (100). I.R. v (film) 2098 (-N₃) cm⁻¹.

Compound 1f: ¹H NMR (300 MHz, CDCl₃) δ 2.62 (dq, 2H, J= 1.55, 7.0 Hz, H-2), 3.41 (t, 2H, J= 7.0 Hz, H-1), 5.84 (dt, 1H, J= 7.0, 11.71 Hz, H-3), 6.51 (d, 1H, J= 11.71 Hz, H-4), 7.17 (d, 2H, J= 5.9 Hz), 8.58 (d, 2H, J= 5.9 Hz). ¹³C NMR (75 MHz, CDCl₃) δ 28.4 (C-2), 50.8 (C-1), 123.3, 129.4 (C-3), 131.7 (C-4), 144.4 (q), 149.9. I.R. v (film) 2101 (-N₃) cm⁻¹.

- Corey, E. J.; Desai, M. C. Tetrahedron Lett. 1985, 5747; Chhen, A.; Vaultier, M.; Carrié, R. Tetrahedron Lett. 1989, 4953.
- 9. General Procedure: To a solution of triphenylphosphine (0.72 g, 2 mmol) in dry diethyl ether (10 ml) was added dropwise a solution of the appropriate azide 1 in the same solvent and the reaction mixture was stirred at room temperature untill N₂ evolution was ceased (about 2 h). The solvent was removed under reduced pressure at room temperature and to the crude iminophosphorane 3 were added dry toluene (60 ml) and diphenylketene(0.39 g, 2 mmol). The resultant solution was stirred at room temperature for 5 min and then activated manganese dioxide (1.74 g, 20 mmol) was added. The resultant mixture was stirred at reflux temperature for 2 h. After cooling, the solvent was removed and the filtrate was concentrated to dryness. The crude product was chromatographed on silica gel column, eluting with diethyl ether/n-hexane (1:4) and recrystallized from chloroform/n-hexane (1:1) to afford 5 as brown crystals.

Compound 5b (42%). ¹H NMR (300 MHz, CDCl₃) δ 3.90 (s, 3H, CH₃O), 6.47 (dd, 1H, J= 3.5, 1.8 Hz, H-3), 7.94 (s broad, 1H, NH), 7.10-8.00 (m, 14H, aromatics). ¹³C NMR (75 MHz, CDCl₃) δ 55.4 (CH₃O), 102.1 (C-3), 113.8, 118.9 (q), 122.5, 123.7, 125.0, 126.2, 127.0 (q), 127.8, 128.2, 128.5 (q), 128.6 (q), 129.2, 129.9 (q), 130.8, 131.5 (q), 132.1, 134.6 (C-9a), 137.1 (q), 158.8 (q).

Compound 5e (37%). ¹H NMR (200 MHz, CDCl₃) δ 6.99 (dd, 1H, J= 3.42, 2.2 Hz, H-3), 7.99 (s broad, 1H, NH), 7.01-8.39 (m, 17H, aromatics). ¹³C NMR (50 MHz, CDCl₃) δ 102.4 (C-3), 119.7 (q), 122.9, 123.9, 128.5 (q), 128.6, 128.9, 129.2, 130.9, 135.1 (C-9a), 137.0, 138.2 (q).

Compound 5g (59%). ¹H NMR (200 MHz, CDCl₃) δ 6.53 (dd, 1H, J= 3.1, 1.9 Hz, H-3), 7.16-8.10 (m, 14H, aromatics + NH). ¹³C NMR (50 MHz, CDCl₃) δ 102.2 (C-3), 119.3 (q), 122.7, 123.8, 124.4, 124.9 (q), 125.0 (q), 125.1, 125.2, 126.1, 127.2 (q), 127.8, 128.4, 128.5 (q), 129.2, 130.5, 130.8, 134.6 (C-9a), 137.0 (q), 139.3 (q).

10. Satisfactory ¹H, ¹³C NMR, mass spectra and elemental analyses were obtained for all new compounds.

(Received in UK 12 February 1993)